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ABSTRACT 
Determining where a vehicle can and cannot safely drive is a fundamental 

problem that must be answered for all types of vehicle automation. This problem 
is more challenging in cold regions. Trafficability characteristics of snow and ice 
surfaces can vary greatly due to factors such as snow depth, strength, density, and 
friction characteristics. Current technologies do not detect the type of snow or ice 
surface and therefore do not adequately predict trafficability of these surfaces.  

In this paper, we took a first step towards developing a machine vision 
classifier with an exploratory analysis and classification of cold regions surface 
images. Specifically, we aimed to discriminate between packed snow, virgin snow, 
and ice surfaces using a series of classical machine learning and deep learning 
methods. To train the classifiers, we captured photographs of surfaces in real 
world environments alongside hyperspectral scans, spectral reflectance 
measurements, and LIDAR. In this initial analysis, only the photography was 
assessed. The classifiers were cross-validated with a subset of the data collected 
for the project. 

In addition to surface imagery, trafficability metrics were collected for 
each surface in the study. Vehicles from three different military classes 
(lightweight ATV, light, and medium/heavy) were tested as a modified Jeep 
Wrangler. Trafficability tests included draw bar and motion resistance, along 
with acceleration, deceleration, slalom, lane-change and circle dynamics tests 
where feasible. Each test surface was characterized alongside the vehicle and 
terrain sensing measurements and include measurements of density, temperature, 
and strength where applicable. 

Results reported here show that winter surface conditions can be 
classified with 70%+ accuracy using onboard photography. Future work includes 
incorporating additional sensor data, vehicle, and snow data into the model.  
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1. INTRODUCTION 

Determining where a vehicle can and cannot 
safely drive is a fundamental problem that must be 
answered for all types of vehicle automation and 
particularly for off-road vehicle operation where a 
wider range of conditions exist. This problem is 
made more challenging in cold regions by snow 
and ice. Trafficability characteristics of snow and 
ice surfaces can vary greatly due to rapidly 
changing factors such as snow depth, strength, 
density, and friction characteristics. Current 
vehicle proprioception technologies do not detect 
the type of snow or ice surface and therefore are 
not able to adequately predict trafficability of 
these surfaces. The US Army must improve these 
technologies to be better equipped for potential 
future conflicts in northern climates, and to enable 
Army Robotic and Autonomous Systems (RAS) 
strategy in these climates [1]. 

 
A long-term goal for cold regions vehicle 

automation is to develop a sensor system governed 
by artificial intelligence and/or machine learning 
(ML) algorithms to predict trafficability of a 
surface.  A comprehensive solution should support 
navigation at scales from full route-planning to 
real-time vehicle reaction and control, and may 
include long range sensing, short range sensing 
and vehicle proprioception. Long range would use 
satellite and unmanned aerial systems or standoff 
sensing technologies to provide large scale terrain 
characterization, short range would use vehicle 
mounted sensors to provide an updated higher 
resolution vehicle perspective terrain 
characterization, and vehicle proprioception would 
allow the vehicle to determine physical or strength 
based parameters like the friction coefficient of 
the surface directly under the vehicle. All of this 
information can be fed into a neural network to 
update vehicle behaviors when this surface is 
encountered again. In this study, we focused on 
short range sensing and took a first step towards 
predicting the trafficability of a surface with an 
exploratory analysis and classification of cold 
regions surface images. Specifically, we aimed to 

discriminate between three winter surfaces 
(packed snow, virgin snow, and ice), sky, and 
vegetation using a series of machine learning and 
deep learning (DL) classification methods. The 
difference between the ML and DL methods is in 
identifying the characteristic features 
distinguishing between different terrain classes. 
For the deep learning neural networks, the raw, 
labeled images (with some elementary pre-
processing) were used as a training set. Once 
trained, the neural network classified new images, 
without specifying what features distinguish one 
class from the other. For machine learning 
algorithms, a manual analysis of available images 
and data was performed first to identify the class-
specific features, and then the identified features 
were used in the classification algorithm. A flow 
chart for the two approaches to classification are 
shown in Figure 1.  
 

Both machine learning and deep learning 
techniques have been used successfully for terrain 
classification for autonomous vehicles in prior 
studies. However, to date, most tools developed 
for cold regions surface classification have been 
limited to simple determinations of snow cover. 
For example Nolte et al. [2] developed a deep 
learning classifier using vehicle based imagery to 
distinguish six types of terrain, of which “snow” 
was a single class (other classes include asphalt, 
dirt, grass, wet asphalt, and cobblestone). 
Similarly Taylor et al. [3] (also reported in Parker 
et al. [4]) used a machine learning classifier to 
make a binary distinction between snow-covered 
and bare ground and demonstrated how an 
autonomous vehicle could change operating 
parameters on the snow covered areas to improve 
performance. Rather than developing a 
classification, Elder et al. [5] used a field spectrum 
analyzer to collect reflectance signatures of 
different cold terrain surface types and compare 

Figure 1: Image Classification Approaches 
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directly with snow strength [6] (an important 
physical property related to trafficability). The 
only existing example of a regional and more 
broadly applicable cold regions terrain 
classification for surfaces of interest for winter 
vehicle mobility, including packed snow, snow 
banks, virgin snow, and ice, is the work by Olivier 
& Shoop [7] who used satellite-based multi-
spectral imagery rather than vehicle based imagery 
for their classification, so while it is helpful for 
route planning it offers only limited utility for on-
the-ground autonomous driving. It is, however, 
feasible that satellite-based classifications could 
be used alongside real-time sensors to improve 
terrain classification accuracy for autonomy. Or 
that similar real-time imagery captured by UAVs 
could be fed directly into vehicle automation 
algorithms. Some work has already been done to 
leverage UAVs as a sensor platform for off-road 
autonomous vehicle navigation, such as the work 
by Vecherin et.al using UAVs to identify obstacles 
in a vehicles path [8]. 

In addition to surface classification for vehicle 
automation and route planning, there is substantial 
active research being conducted on road surface 
classification for the purpose of regional road 
surface monitoring. This research is similar in 
principal to the classification used in automation 
and the techniques could potentially be leveraged 
for automation applications. Road Weather 
Information Systems (RWIS) have become 
common in recent years [9]. These systems consist 
of weather stations, cameras, and frequently, 
pavement temperature sensors, and are used both 
to triage road networks for winter maintenance 
(snow removal, salting, and sanding) and to 
estimate road safety conditions (e.g. may be used 
to change variable speed limits or to inform road 
closures).  Several researchers have developed 
computer vision tools using imagery from RWIS 
to estimate trafficability of roads. Yasuno et al. 
[10] developed a scalar snow rate hazard index 
related to the percent of a roadway covered in 
snow which they estimated based on RWIS and 

CCTV imagery using deep learning. Research at 
the University of Waterloo [11] developed a deep 
learning-based classifier to estimate a three-
category winter road surface condition metric 
(RSC) from RWIS imagery in Ontario, Canada. 
The RSC classifications included bare pavement, 
partial snow cover, and full snow cover. 
Additional studies at the University of Waterloo 
showed the RSC metric could also be estimated 
from Smartphone [12] and dash cam [13] images 
and Shoop and Coutermarsh [14] used on-board 
vehicle sensors compared with onboard 
diagnostics derived data for use of vehicles as a 
winter road-weather sensors. 

This study advances the field of computer vision 
for cold-regions surface classification and vehicle 
automation by extending vehicle based models to 
identify three types of winter surfaces with 
different trafficability metrics (ice, packed snow 

Table 1: Machine learning and deep learning approaches used 
in prior snow classification efforts compared to this study 
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(PS), and virgin snow (VS)). The work builds on 
the prior research discussed above which 
successfully identified snow covered vs. non-snow 
covered terrain from ground and vehicle based 
sensors, and broader classifications with satellite 
imagery. A comparison of tools and classification 
capabilities between this and prior studies of 
imagery classification for cold terrain is shown in 
Table 1. 

 
2. DATASET 

Cold-regions surface data was collected in two 
locations for this study: Team O’Neil Rally 
School in Dalton, NH, and the Keweenaw 
Research Center in Calumet, MI. In both cases, 

image and spectral data were collected alongside 
vehicle tests and measurements of the surface 
density, temperature, and strength. The imagery 
and spectral data collected included RGB 
photographs, red / near-infrared photographs 
(using an 830nm band pass filter), and spectral 
reflectance measurements. At Team O’Neil, 
hyperspectral imagery and LIDAR were also 
collected. 

For the preliminary analysis, only the RGB and 
830nm filtered photography where processed. The 
830nm filter was chosen (vs other filters) based on 
work from Wiscombe and Warren [15] that 
predicts the highest difference in reflectance of 
snow with different grain sizes in the near infrared 
bands (~800-2,500nm) – it was thought that 
differentiation of snow grain size would be likely 
to correlate with snow surface type. A total of 149 
full images were captured (77 RGB and 72 830nm 

lens). Care was taken to collect images at a variety 
of conditions and angles: at each location images 
were taken horizontally, -30 degrees from 
horizontal, and directly toward the ground. Images 
were captured toward the sun and away from the 
sun, in cloudy and sunny conditions, and at 
different times through the day.  

Image pre-processing included segmenting each 
original image into 20 x 20 grids and manually 
classifying each “cell” of the grid with one of 
seven classes (ice, packed snow, virgin snow, 
vegetation (Veg), sky, other, and mixed). To aid 
classification, the original images were taken at 
locations where the dominant surface type was 
uniform and co-located with vehicle testing. 
Images taken horizontally and at -30 degrees 
generally included multiple classes while the 
original images taken directly at the ground only 
contain a single class. The full count of image 
“cells” used in development of the classifiers is 

shown in Table 2 and the process for segmentation 
and classification process is shown in Figure 2 

 
Table 2: Count of image "cells" available. In each test, the 

models were trained on 70% of the data by class, and 30% 
was held back for validation. 

 
  

3. DEEP LEARNING APPROACH AND 
RESULTS 

In our initial approach, we used transfer learning 

 Visible 830nm 
ICE                   952                    912  
Mixed                1,191                 1,026  
Other                1,353                 1,742  
PS                7,325                 6,242  
Sky                2,782                 1,953  
Veg                1,354                 1,068  
VS                7,478                 5,900  
Total              22,435               18,843  

Figure 2: Images are segmented and each cell is classified 
prior to training the classifiers. The completed classifiers are 

also applied to new images at the cell level. 
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to re-train three deep learning networks with the 
RGB and 830nm cell level imagery. The neural 
networks used included: 

 AlexNet – A popular convolutional neural 
network (CNN) for computer vision. 

 SqeezeNet – A computationally light-
weight CNN designed similarly to 
AlexNet. 

 InceptionNet V3 – A powerful, deep (and 
more computationally expensive) CNN 
commonly used in computer vision, and 
chosen for comparison to [11] and [2]. 

Each network was pre-trained using images from 
the ImageNet database. Only the last few 
classification layers were re-trained in each 
network. Thirty percent of each class of the snow 
surface images were excluded from the training 
and used for validation. The highest validation 
accuracy of 67.8% was achieved with AlexNet on 
classification of RGB imagery. Final validation 
accuracies of each network and imagery are 
shown in Table 3. 

 
Table 3: Final validation accuracy of each deep learning 

network / imagery type. 
 
Importantly, these data represent cell-level rather 

than full image level classification accuracy. For 
any given image, some cells will be classified 
incorrectly. However, regions of particular snow 
patterns may still be visibly obvious. For example, 
Figure 3 shows the result of applying the trained 
SqueezeNet to an RGB image. Some incorrect 
cells are clearly visible (e.g. two cells classified as 
“sky” in the virgin snow field), but general 
boundaries of VS and PS areas are easily 
observed.  

A further understanding of the classification 
effectiveness can be gained by looking at the 
class-level accuracy. Table 4 shows the class-level 
accuracy for AlexNet using RGB imagery. Of the 
three winter surface categories, it can be seen that 
virgin snow classification is fairly accurate at 

88%, while packed snow classification is lower at 
66%, and ice classification is very low at 6%. The 
very low accuracy in classification of ice is 
troubling since it is a surface of significant 
importance in determining trafficability, and it 
may be related to the lower volume of ice images 
in the training set (only 4% and 5% of visible and 
830nm cells respectively) compared to other 
classes. Overall, the best accuracy for 
classification of ice was 33% achieved with 
AlexNet applied to 830nm images, but the overall 
validation accuracy was lower. Future work, 
including adding additional ice images and/or 
sensor frequencies that better distinguish between 
ice and snow to the training data set, will be 

conducted to improve the classification accuracy 
of ice. 

A second observation from the class-level 
accuracies is the relatively poor performance in 
classification of “mixed” and “other” classes. 
These lower accuracies are not as surprising or 
problematic as the misclassification of ice: in the 
manual cell classification step, the “other” and 
“mixed” class were primarily used to separate 
anomalies from the main training categories. The 
“mixed” category, for example, was used if part of 
the cell was packed snow and part was virgin 
snow, and the “other” category was used for a 
wide variety of other objects such as people, road 
signs, building, and vehicles. In both cases, it is 
unsurprising that a cell may be miss-classified by 
the deep learning network due to the wide 
variability of these classes, and due to many of 
these cells containing partial areas of another 
class. To account for this, we also calculated the 
validation accuracy for all classes excluding 
“mixed” and “other”. Again, AlexNet trained on 
RGB images achieved the highest adjusted 

 RGB 
Imagery 

830nm 
Imagery 

AlexNet 67.8% 54.4% 

SqueezeNet 64.6% 54.7% 
InceptionNet 

V3 
61.7% 53.4% 

Figure 3: Example classification: SqueezeNet applied to 
RGB image. (A) Original RGB image. (B) Cell-level 

classified image with the trained neural network. While 
some cells are misclassified (e.g. two cells classified as 

“sky” in the virgin snow field), regions of different surface 
types are discernable. 
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accuracy at 73.6% (SqueezeNet RGB 70.7%, 
InceptionNetV3 RGB 67.5%, AlexNet 830nm 
61.3%, SqueezeNet 830nm 62.3%, and 
InceptionNetV3 830nm 61.4%). 
 

Finally, it should be noted that some overfitting 
of the training data was observed while training 
each of the deep networks. Overfitting occurs 
when the network is able to distinguish features 
unique to the training images that, while 
representative of the specific training data, are not 
representative of the class. This overfitting can be 
observed as the classification accuracy of training 
data diverges from the validation accuracy through 
training as can be seen by the separation of blue 
and black lines in Figure 4. Overfitting can be 
mitigated by tailoring the training parameters 
and/or introducing randomness into the network 

(e.g. randomly excluding different layers on 
different training runs). In this study, we were 
limited by computational time to iterate and 
optimize training parameters (this is left for future 
work). However, the maximum divergence 

between training accuracy and validation accuracy 
was less than 10% in every case, which was 
deemed acceptable for the initial analysis, and the 
accuracy on the validation set was leveled, and not 

decreasing. 
 
 

4. MACHINE LEARNING APPROACH AND 
RESULTS 

The machine learning algorithm developed for 
this study is based on examination and comparison 

of statistical moments, calculated from the 
collection of pixels in each “cell” image. In 
contrast, other ML classifiers may focus on shape, 
or edge detection, especially if the classifier is 
designed to identify solid objects. The 
classification of snow and ice types is qualitatively 
different, there are no solid objects, which can be 
detected and classified. Therefore, this approach 
extends the texture filtration idea, which was 
deemed to be the most useful for snow type 
classification. In this section, two types of ML 
classifiers are developed, both based on this 
statistical approach.  

The initial step taken is conversion of the red-
green-blue (RGB) cell images to gray scale 
images representing the light intensity. The 
conversion to intensity is given by the weighted 
average in Equation 1: 

 
 𝑌 =  0.299𝑅 + 0.587𝐺 + 0.144𝐵 (

1) 

Table 4: Class level accuracy of AlexNet trained on 
RGB imagery, counts show the percent of cells from data 

set aside for validation by their true and predicted (by 
AlexNet) classes. 

Figure 4: Training example: AlexNet trained on 
RGB imagery. Some overfitting is observable in the 
divergence between the blue (training accuracy) and 

black (validation accuracy) curves. However, the 
final observed difference was less than 10% which 

was deemed acceptable for this study 

Figure 5: Probability density function (PDF) estimates 
of gray scale intensity Mean (A), Variance (B), 

Skewness (C), and Kurtosis (D), for all seven class types. 
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where R, G, and B are integer numbers ranging 
from [0 255] that describe the red, green, and blue 
color in each pixel, and Y is the corresponding 
intensity. This transformation corresponds to the 
YIQ color space used by the National Television 
System Committee (NTSC), and approximates the 
black and white color imagery used by mid-20th 
century American televisions [16]. After 
conversion to gray scale via Equation 1, each cell 
image is composed of a distribution of intensity 
values.  

Next, the first four statistical moments (mean, 
variance, skewness, and kurtosis) of these 
distributions are calculated and used as metrics for 
image classification. For brevity, these metrics 
will be abbreviated to M, V, S, and K. Each cell 
image in the data set is now described by these 
four numbers. The next step is to aggregate the 
statistical moments by class (VS, PS, Ice, Veg, 
Sky, Mixed, Other) and observe the distribution of 
these metric values within the entire data set. 
Figure 5 (A-D) show probability density function 
(PDF) estimates of class-specific M, V, S, and K 
distributions, respectively.  

The PDF estimates were obtained by using a 
kernel density estimate (KDE) with Gaussian 
kernel and optimal smoothing bandwidth 
parameter. The bandwidth parameter is an 
ingredient in the PDF calculation which governs 
the width of the kernel function, in this case, 
Gaussian function. Because the classifier depends 
on PDF estimates, its performance is sensitive to 
the choice of bandwidth parameter. The 
bandwidth chosen for this application is given by 
Equation 2:  

 
𝑘 = 1.06 𝜎 𝑛ିଵ/ହ, (2)  

where 𝜎 is the standard deviation of the 
respective M, V, S, and K distributions, and n is 
the number of samples. The compact Equation 2 is 
known as “Scott’s rule of thumb” [17]. 

For a given image with a set of values (M, V, S, 
K), the values of class-specific PDFs seen in 

Figure 5 characterize likelihood that the image 
belongs to the specific class. For example, 
consider only Figure 5(A), which shows the class-
specific PDF estimates of the average intensity 
values (M). Suppose, an image is randomly chosen 
from the data set and found to have an M value of 
150. Referencing the PDFs in Figure 5A, one sees 
that for M = 150, the PDF corresponding to 
packed snow (PS) has the highest value, followed 
by VS and Ice, then Mixed, and so on. Therefore, 
based on the M metric, the randomly sampled 
image most likely belongs to the PS class, 
followed by VS and Ice, then Mixed, etc. This 
logic is equally applied to the other three statistical 
metrics (V, S, K) and underpins the first ML 
algorithm developed for this study. Let us denote 
the PDF value of an image i, as 𝑃(𝑥|𝑄, 𝐶). Here, 
𝑄 defines one of the four statistical metrics (M=1, 
V=2, S=3, K=4), 𝑥 is the 𝑖th image PDF argument 
for that metric, and the condition C denotes one of 
the seven classes (VS=1, PS=2, Ice=3, Veg=4, 
Sky=5, Mixed = 6, Other = 7). As an example, the 
quantity 𝑃(𝑥|2,5) gives the probability density 
estimate for the variance of the image i, given the 
distribution of variances contained in the Sky 
class. This quantity indicates the likelihood that 
the image i belongs to the Sky class. In total, there 
are twenty-eight combinations of 𝑄 and C, which 
correspond to the twenty-eight PDFs seen in 
Figure 5. The first classifier is then defined by 
Equation 3:  

 
𝐼(𝑖) = argmax

{େ}
ෑ 𝑃(𝑥|𝑄, 𝐶)

ସ

ொୀଵ

,   
 
(

3) 
where I(i) is an index indicating the classification 

of the image i. The four-fold product is 
tantamount to the “AND” operation in probability 
theory, i.e. for the image i to belong to class C, all 
metrics should be sufficiently high, M AND V 
AND S AND K.  

The classifier described by Equation 3 on the 
gray scale jpg imagery achieved a training set 
accuracy of approximately 51% overall, with 
individual class accuracy of 47.2% for VS, 53.3% 
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for PS, 60.1% for Ice, 65% for Veg, 79.4% for 
Sky, 23.4% for Mixed, and 11.5% for Other. 
‘Training set’ in this context means all images 
were used to calculate the PDFs, and tested by the 
classifier. Training-validation simulations were 
also conducted, where a fraction of the images are 
used to train (calculate the PDF) and the 
remaining images used to validate. The training-
validation simulations using this type of classifier 
were less accurate (< 51%) than the training set. 
Although the performance of the first classifier is 
unimpressive, it provided “proof of concept” in 
the PDF approach, and motivated the development 
of the second type of machine learning classifier 
used in this study. 

The second type of classifier is based on 
multivariate PDFs. The PDFs seen in Figure 5 are 
one-dimensional, but it is possible to calculate N-
dimensional, or multivariate PDFs, using N-
dimensional kernel functions. In this approach, the 
four statistical moments (M, V, S, K) now 
represent each dimension, and individual images 
can be conceptualized as inhabiting that 4-
dimensional space. In addition, the information 
about the color (R, G, B) of each cell image can be 
incorporated into this multidimensional 
framework. Figure 6 shows a 3-dimensional 
scatter plot which maps where each of the first 
five classes (VS, PS, Ice, Veg, and Sky) exist in 
the (R, G, B) space. The coordinates of individual 
scatter points are calculated as the mean of the R, 
G, and B pixel values comprising each cell image. 

The class specific cell images produce a 
nontrivial spatial distribution in the (R, G, B) 
space. Typically for automatic classification, the 
effectiveness of this type of classifier depends on 
good spatial separation of the classes. For 
instance, a good separation between the points 
representing Sky images and Vegetation images 
can be observed in the Blue dimension in Figure 6.  

Let us denote a multivariate PDF value of an 
validation image i as 𝑃௩(𝐱|𝐐, 𝐶). Here a 
subscript val is introduced to indicate that the 
image i belongs to a validation set of images, and 
is therefore classified using PDF estimates 
calculated from a different sub set of images. The 
index 𝐐 now indicates a list of statistical metrics, 
whereas 𝑄 previously only indicated one metric. 
There are up to seven metrics to consider: (R = 1, 
G = 2, B = 3, M = 4, V = 5, S = 6, K = 7). As an 
example, the quantity 𝑃௩(𝐱|[2 5 6],3) gives the 
multivariate PDF estimate of the image i, in the 3-
D space defined by the (G, V, S) metrics, trained 
by images belonging to the Ice class. The second 
classifier is then defined by Equation 4: 

 
 𝐼(𝑖, 𝐐) = argmax

{େ}
𝑃௩(𝐱|𝐐, 𝐶), 

 

(
4) 

where 𝐼(𝑖, 𝐐) is an index indicating the 
classification of the image i with the set of metric 
values 𝐱, in the multi-dimensional space defined 
by the list of metrics, 𝐐. 

The accuracy results for the second type of 
classifier is summarized in Table 5. Here, the 
analysis was conducted for both the visible, and 
830 nm images, indicated by the first column of 
Table 5. Three combinations of metrics were 
tested, RGB, MVSK, and RGBMVSK, indicated 
by the second column. 

 
The accuracies shown in Table 5 are 

percentages, averaged over one hundred 70-30 
training-validation simulations with random 
selection of images for the training and validation 
sets. During one 70-30 training-validation 
simulation, the collection of images for each class 

Figure 6: Three dimensional scatter plot of mean R, G, B 
color for images in the first five class types. 

Table 5: Overall and class level accuracy (percent) for the 
multivariate PDF classifier type. 
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type are proportionally split into two sets: a 
training set comprised of 70% of all the images, 
and a validation set comprised of the remaining 
30%. Determination of which images belong to 
which set is randomized for each simulation. The 
randomization creates variability in the resulting 
accuracy of classifications for a given 70-30 
training-validation simulation, hence the need to 
average over many (100) such simulations. The 
accuracy estimates seen in Table 5 are color 
coded. Classifications with >70% accuracy are 
shaded dark green, 70-60% are light green, 60-
40% are orange, and <30% are red.  

Several insightful conclusions can be drawn 
from Table 5. First, the classifier delivers 
generally better results for visible spectrum jpg 
images than 830 nm imagery. This is in agreement 
with the deep learning networks. There are a few 
exceptions to this rule, notably the classification 
accuracy of packed snow with RGB is greater for 
830 nm than visible, by an appreciable margin (~ 
+10%).  

Second feature to note is the universally poor 
classification accuracy of the Mixed and Other 
classes, which was discussed previously in the 
deep learning section. Next, it is worth noting that 
for all but one class, the classifier using MVSK 
information performs better than RGB. This seems 
to confirm the underlying hypothesis behind the 
use of the statistical ML approach. MVSK metrics 
are representative of the “texture” or “roughness” 
of the images, and are more useful for 
classification than other features, such as color. 
The exception to this rule is packed snow, which 
is classified with a higher accuracy using 
information about color in both the visible and 830 
nm spectrums.  

Next, note that “adding in dimensions” to the 
classifier, e.g. comparison of RGB to RGBMVSK 
does improve total classification accuracy, 
indicated by the last two columns in Table 5, but 
is generally not true for individual classes. For 
example, the classification accuracy for virgin 
snow (VS) in the 830 nm spectrum is very poor 

(3.5%) for RGB, but significantly improved for 
MVSK (68.1%). However, the accuracy when all 
seven metrics are used, RGBMVSK, provides 
worse classification accuracy (63.8%). 
Qualitatively, it seems the reintroduction of 
information about the color polluted the otherwise 
better classification from MVSK alone.  

Last, note that the reduced accuracy of the 
RGBMVSK classifier compared to only MVSK is 
true for all classes except PS, and yet the total 
accuracy for RGBMVSK is better than MVSK. 
This is due to the PS class having a 
disproportionally larger share of the image data 
set. For the visible images, the PS class accounts 
for ~33.2% of all images. Therefore the total 
accuracy, which is calculated as the ratio of all 
images classified correctly to all images tested by 
the classifier (regardless of class), is affected by 
PS images more than other classes. 

The PDFs used in the second type of classifier 
were calculated using the multi-dimensional 
generalization of Equation 3 [18] for the kernel 
bandwidths:  

 
𝑘 =  𝜎 ൬

4

𝑛(𝑑 + 2)
൰

ଵ
ௗାସ

, 
 

(
4) 

where 𝜎 is the standard deviation of the 
respective one dimensional distributions, n is the 
number of samples, and d is the number of 
dimensions of the multivariate PDF. As mentioned 
previously, the performance of the PDF classifiers 
is sensitive to the selection of bandwidth 
parameters.  

Investigation of varying the bandwidth 
parameters, k, revealed that further classifier 
accuracy could be gained by choosing larger k 
than what is predicted by Equation 4. Larger k 
effectively makes the kernel functions wider, and 
the resulting multivariate PDFs smoother by 
appearance. Table 6 shows results for the second 
type of classifier with “best guess” choices made 
for the bandwidth parameters. The improvements 
to accuracy, compared to Table 5, are significant 
and highly encouraging. This result suggests an 

Table 6: Overall and class level accuracy (percent) of the 
multivariate PDF classifier type with manual bandwidth 

parameter adjustment. 
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optimization of bandwidth parameters is possible, 
and warrants further investigation. 

 
5. DISCUSSION AND RESULTS 

Both deep learning and traditional machine 
learning approaches showed promising results in 
this initial analysis. Overall, the machine learning 
approach with manual adjustment of the 
bandwidth parameter showed the best results at 
71.4% classification accuracy for RGB imagery. 
AlexNet was close behind with 67.8% accuracy 
for RGB imagery. Notably, the machine learning 
approach was much more accurate at classifying 
ice than even the best case deep learning approach 
(74% vs. 33% for AlexNet classification of 830nm 
imagery). This may be a related to the machine 
learning focus on textural image properties vs. the 
deep learning networks which were each 
developed and pre-trained for object recognition. 
Additionally, although not implemented in this 
paper, the machine learning approach provides an 
opportunity to directly optimize and/or weight 
specific categories of interest while the deep 
learning approach in general does not. 

There remains significant opportunity to further 
refine both deep learning and machine learning 
approaches to increase classification accuracy. On 
the algorithm side, there are several deep learning 
networks that have been developed specifically to 
decode textural rather than shape data (such as 
networks developed for interpretation of x-ray 
images). The authors believe that these networks 
may perform better than the more common neural 
networks tested here. On the machine learning 
side, it is possible to further expand the developed 
approach to account for more than 7 variables 
which may increase accuracy.  For both 
approaches, removing “other” and “mixed” classes 
from the training data set entirely may reduce false 
negatives for the packed snow, virgin snow, and 
ice classes that are most important for mobility. 

Possibly more important that algorithmic 
improvements are refinements to the data 
collected and analyzed. Oliver and Shoop [7], for 

example, achieved 95.8% classification accuracy, 
with similar classes, when analyzing short-wave 
infrared (SWIR) satellite imagery instead of only 
RGB imagery. In addition to the RGB and 830nm 
imagery discussed in this analysis, the authors 
collected hyperspectral imagery, LIDAR, and 
spectral reflectance that may each have advantages 
over traditional imagery. As a next step the 
authors will analyze the additional sensor data to 
determine if a higher classification accuracy can 
be achieved from other sensors. The authors will 
also mix-and-match data through sensor fusion to 
determine if there is a set of multiple signatures 
that significantly outperforms the individual 
sensors. Once an optimal set of sensors is 
identified, the authors will work to further 
segment the class structure to capture additional 
snow types that impact mobility (in particular 
segmenting the virgin snow class into multiple 
sub-classes). The end goal will be to determine a 
combination of a small number of sensors that 
could be developed into a terrain sensing package 
suitable to integrate with an autonomous vehicle 
control system to improve off road performance in 
cold regions. 
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